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Chapter 7

NATURE AND PURPOSE OF RADIOLOGICAL COUNTERMEASURES

7.1 Explosion Phenomena and Counfermeasures

A countermeasure system is defined here as any combination of actions,
preparations, or use of protective facilities and equipments that reduces or
eliminates the hazards, to humans and to physical resources, arising from the
explosion phenomena of weapons of war. In the following discussion this
definition is restricted to the types of weapons that would be used in a nuclear
war; by implication, therefore, the definition includes actions that could be
taken to maintain the life of survivors and to promote the recovery of societal
functions in the period following the attack phase of the war.

Several explosion phenomena.occur when a nuclear weapon is detonated,
that interact with, and have an effect on, surrounding objects. Countermeasures
designed to intercept and alter the interactions of these explosion phenomena
with surrounding objects, so that the magnitude of the effect of the interactions
is reduced or eliminated, may be termed receptive countermeasures. The
consideration of the use of receptive countermeasures is based on the possibility
that the phenomena may occur.

A simple but fundamental statement about receptive countermeasures is
that both their nature and their composition must be deduced from information
on both the phenomena and the target. The statement is fundamental because it
requires that countermeasures be identified and specified directly from the
identification of the explosion phenomena and from the specification of the effects
of these phenomena on people and human resources.

The major phenomena of nuclear explosion are identified as: (1) initial
nuclear radiation, (2) thermal radiation, (3) blast and shock, and {4} residual
radiation or failout. The first three occur within a short time after the
explosion; their isointensity patterns on a surface are circular about the point
of detonation. The residual radiation or fallout phenomenon (as a hazard)
develops over a period of time after the explosion; the fallout radiation isointensity
patterns have elongated shapes extending a considerable distance downwind from
the point of detonation.

The magnitude of the radiation intensity from fallout would be largest when
the explosion occurs near the surface of the earth; in fact, air detonation fallout
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is usually neglected as an immediate personnel hazard. Secondary effects from
the initial explosion phenomena, such as fires ignited by the thermal radiation,
may last for some time afterward but they would not be a source of concern for
as long a time as the radiological hazard from fallout.

This listing of the four major phenomena of nuclear explosions is not a
new one; all are well recognized. Two major significant points about them
should be emphasized: 1, The physical nature of each of the four phenomena
is different from that of any of the others in one way or another; hence, technical
considerations of protective countermeasures must account for each of the four
separately. 2. The operational use of countermeasures must consider the
intensity pattern of the combined phenomena, including the time-sequence of
each, and the cumulative effect of their interactions with the environment.

The general technical natures of the receptive countermeasures applicable
to each of the explosion phenomena are also fairly well known. The counter-
measures include:

1. Shielding: to reduce the gamma ray intensity and neutron flux of
the initial nuclear radiation;

2. Shielding, fire-prevention techniques, and employment of fire-
control methods: to reduce the effects of exposure of people and
property to both thermal radiation and fire hazards;

3. Shielding and heavy construction: to reduce damage from blast
and shock; and

4, Shielding, decontamination, and exposure-control methods: to
reduce the exposure of people and animals to the nuclear radiation
from fallout.

The countermeasure common to all four explosion phenomena is shielding.

Evacuation and distance are not included here as receptive counter-
measures since they do not specifically operate against any one of the phenomena.
Evacuation is a preventive rather than a protective measure; its successful use
(for mobile objects) generally would require prior information about the location(s)
of the explosion(s). Distance, aside from its identification with evacuation, is
most often associated with the decrease in intensity of nuclear radiation from a
single point source of radioactivity. However, in a fallout area where point
sources are everywhere, distance is not an effective countermeasure except for
the case in which the sources are removed, as in a decontamination process.

In this sense, the term distance may be included as part of the decontamination
countermeasure.
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If a potential response level of humans {or cother objects) to the intensity
of the four phenomena is selected, such as the intensity that could result in a
large fraction of fatalifies, then statements can be made about the relative
order in the size of the affected areas enclosed by each of the phenomena for
the selected response level. For example, the relative sizes of the areas
enclosed by the four phenomena from the detonation of a standard nuclear
weapon in the megaton yield range near the surface of the earth, where the
perimeter of the affected areas is defined by a (potential) response level
equivalent to about 50 percent human fatalities, are, largest to smallest:
(1) fallout, {2) thermal radiation, (3), blast, and (4) initial nuclear radiations.
In this example, the area covered by radiation levels high enough to produce
the stated minimum level of potential response would be nearly 100 times
larger than the area affected by thermal radiation and giving the same effective
response {i.e., about 50 percent deaths).

A single detonation of the same type of nuclear weapon at an optimum
height in the air would give the order of area coverage, largest to smallest:
{1) thermal radiation, (2) blast, and (3) initial nuclear radiations.

If objects other than humans were selected for consideration at a given
potential response level, a different order of area coverage for the four
explosion phenomena could result. For example, the radiation from fallout has
no effect on most physical objects. Some objects are more susceptible to
damage by blast and shock than they are to thermal radiation. For a single
surface detonation in which all four phenomena occur it is clear that, of the
total affected area, the largest fraction would he affected by fallout only. Smaller
portions of that area would be affected by thermal radiation only, by fallout
and thermal radiation, by thermal radiation and bhlast, by fallout, thermal
radiation, and blast, and by all four phenomena simultaneously. If the affected
area for the surface detonation is examined in te1ms of the response of
inanimate objects, it can be reduced to about the area coverage of the three
immediate phenomena.

In general, two characterisiic areas maybeidentified. One is the portion
of the affected area that receives fallout only and would contain undamaged
structures and facilities. The other is the smaller portion of the whole affected
area that receives thermal radiation and blast effects; this would contain
physically damaged facilities and people. The shape of this smaller area,
while determined to a large extent by its physical nature, would be more or
less circular around the point of detonation. The degree of damage within it,
also dependent on its physical nature, would increase as the distance to the
point of the explosion decreases.
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Where the order of development of a countermeasure system follows the
order of the sizes of the areas affected hy the explosion phenomena, the step-
wise procedure would be to:

1. Provide protection against fallout (i.e., radiological countermeasures).

2. Add protection against thermal radiation effects, where needed
(i.e., fire prevention and control countermeasures).

3. Add further protection against blast and shock and initial nuclear
radiations, (i.e., blast shelters).

Accomplishment of the first step would reduce the area affected by fall-
out, the area characterized by undamaged facilities, as well as reducing some
portions of the areas affected by the other phenomena, In other words, a
shelter that provides adequate shielding against the nuclear radiations from
fallout also provides some level of protection against thermal radiation and
blast or shock. Protection against thermal radiation and its effects could be
added, in the second step, in locations where the fire potential of an area is
considered to be high. Blast protection could be provided, in the third step,
where the population density is high or where the location is considered--
perhaps on strategic grounds--to be a prime target in a nuclear war,

For the case of a single nuclear explosion near the earth's surface, two
characteristic areas may be identified. In the one affected only by fallout, no
physical damage occurs directly from the other phenomena of the explosion; in
the other, physical damage does occur. In a nuclear war, in which several or
many nuclear explosions take place over the country, a third characteristic
area can be identified: the "unaffected' area. The term does not mean that the
people in the third area would not be affected by a nuclear war, or that the area
would not receive some fallout. By definition, the unaffected area would be out-
side the affected area and, although the boundary between the two may be defined
in a variety of ways, the general features of the unaffected area would be that it
contains no physically damaged facilities and that it receives less than a stated
level of fallout.

A possible definition of the perimeter of the area that is affected by fallout
would be one given in terms of the radiation level at which the general movement
of people would (or should) be restricted because of exposure to the nuclear
radiations from fallout. Then, because of the decay of the radioactivity in fall-
out, the unaffected area would increase with time after the war and the area
affected by fallout only would decrease. The applications of this definition of
the perimeter, and detailed descriptions of the three areas, are given in
Section 7.2.
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Radiological countermeasures are particularly applicable to the areas
affected by fallout only. Initially, these countermeasures have at least two
important local functions as part of a larger countermeasure system or civil
defense organization: first, to reduce the exposure of people to the nuclear
radiations from fallout: second, to recover the use of the undamaged facilities
in the area as soon as possible. These functions and the methodology for
carrying them out are discussed in some detail in the following chapters.

7.2 The Affected Areas and Counfermeasures

7.2.1 General Classification of Affected Areas

The discussions of the previous section, supported by and derived
from war-gaming studies of nuclear attacks, show that the areas affected by
the explosion phenomena of nuclear weapons (blast and shock, initial radiations,
thermal radiations, and nuclear radiations from fallout) can be separated into
three classes of areas, depending on the severity (or intensity) of each of the
explosion phenomena and on the manner in which each phenomenon interacts
with the environment.

Because of the spatial distribution of targets and wind patterns,
some areas would receive only worldwide (low level) fallout in an attack. These
areas would be otherwise unaffected, at least directly, by the four major weapon
phenomena, and are termed FREE areas. Movement of people and nonhuman
resources in these areas would be unrestricted, and no protective measures
would be required to assure immediate short-term survival of their people and
nonhuman resources.

Other areas of the country would receive sufficient local fallout
deposits to require some level of protection, so as to keep radiation exposures
below a stated level or to prevent fatal exposure levels; these are termed
RADEP (i.e., radioactive deposit) areas. Outdoor movement of people in these
areas would be restricted temporarily because of the nuclear radiation from
fallout. In these areas the major protective and recovery countermeasure
actions include stay in sheltered locations, for various periods of time,_ depend-
ing on the level of the fallout deposit, and decontamination of exposed surfaces
(paved areas, roofs, land areas, etc.).

Areas nearest to the explosion points would receive physical damage
from the blast and thermal radiation phenomena; these are termed DAMAGED
areas. In addition, these areas would receive the fallout from both low air
bursts and land-surface explosions, or at least from the detonations causing
the damage. In these areas, the major protective countermeasure for people
is shelter. The use »f other possible countermeasures is discussed below.
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Identification of the three basic area types, namely the FREE,
RADEP, and DAMAGED areas, is most significant with regard to (1) sorting
out the various countermeasure actions applicable to each, (2) arranging the
priority of the alternate operations that are possible, and (3) specifying the
options available to civil defense authorities in organizing recovery actions.
But first it is important to focus attention on how the three types of areas may
be identified and on how :and when the boundaries between them may be located.

7.2.2 Approximate Methods For Locating 'The Imitial Boundaries of The
Three Major Areas

The boundary line(s) between any two of the three characteristic
areas can be established best by illustrative example. This may be done by
first considering the boundary between the FREE and RADEP areas for the
fallout from @ single land-surface detonation. Ina sense, this boundary can
be established or defined on an operational basis because in the FREE area
operations would at no time be restricted because of radiological hazards and,
in the RADEP area, at least the outside operations would be restricted for
some time because of exposure of people to the gamma radiation from fallout.
The definition of the boundary hetween the two areas on the basis of freedom
to conduct outside operations results in a boundary that moves with timse. The
perimeter of the RADEP area moves inward as the radioactive nuclides in
fallout decay; and the RADEP areas, in general, will disappear altogether, in
about one to twe years after attack, even if no radiclogical countermeasures
are used. The RADEP areas would not be created by detonations at high altitudes.

Unshielded operations in radiation fields may be conducted at any
location or area if the exposure(s) to nuclear radiation of the people carrying
out the operation results in exposure dose(s) that are less than some stated
amount. Since it would be desired that the continued capability of people to do
useful work be maintained over a peried of time, the initial allotments of dose
in early operations must not exceed the threshold for radiation sickness. I
such an allotment of exposure is prescribed for the early exposures, then many
necessary operations camn be conducted over a period of time without subseguent
losses in the surviving work force due to possible radiation effects. Both
bieclogical recovery and radioactive decay would tend to limit the hiological
damage in later exposures.

‘Consideration of these factors leads to a suggested infinity dose
of about 100 roentgens as the potential exposure dose for the initial definition
of the boundary between the RADEP area and the FREE area. Inother words,
in fallout areas where the estimated infinity exposure dose--the outside-of-
shelter exposure dose from time of fallout arrival to about 2 years later--is
less than 100 roentgens, no one needs to stay in shelter, but could if no actions
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